
The drunken bishop: An analysis of the OpenSSH
fingerprint visualization algorithm

Dirk Loss∗, Tobias Limmer†, Alexander von Gernler‡

September 20, 2009

Abstract

OpenSSH 5.1 introduced an ASCII-based visualization method for the
remote servers’ public key fingerprints. We explain the algorithm used to
visualize the fingerprints and present some initial findings about its proper-
ties. Based on a Markov model and some brute-force attacks we were only
able to produce some basic results. But we hope that our analysis will spur
further research on this topic, so that eventually it will be found out whether
the (heuristically designed) algorithm is secure enough for this purpose.

∗mail@dirk-loss.de
†limmer@informatik.uni-erlangen.de
‡grunk@openbsd.org

1

Contents

1 Introduction 3

2 The algorithm 5
2.1 Field . 5
2.2 Movement . 7
2.3 Coverage . 8
2.4 Values . 10

3 Markov analysis 11
3.1 Transistion matrix . 11
3.2 Probabilities for each position . 12
3.3 Reachability . 12

4 Collisions 15
4.1 Random brute force attacks . 15
4.2 Constructing collisions based on graph theory 15
4.3 Bruteforcing identical visual fingerprints 17

5 Ideas for further work 20

2

1 Introduction

Bishop Peter finds himself in the middle of an ambient atrium. There
are walls on all four sides and apparently there is no exit. The floor is
paved with square tiles, strictly alternating between black and white. His
head heavily aching—probably from too much wine he had before—he
starts wandering around randomly. Well, to be exact, he only makes
diagonal steps—just like a bishop on a chess board. When he hits a
wall, he moves to the side, which takes him from the black tiles to the
white tiles (or vice versa). And after each move, he places a coin on
the floor, to remember that he has been there before. After 64 steps,
just when no coins are left, Peter suddenly wakes up. What a strange
dream!

When a Secure Shell (SSH) client connects to a server for the first time, the
fingerprint of the server’s public key is presented to the user. The user is prompted
to verify the fingerprint and thereby attest the authenticity of the server:

$ ssh anoncvs.de.openbsd.org

The authenticity of host ’anoncvs.de.openbsd.org (131.188.40.91)’

can’t be eastablished.

RSA key fingerprint is fc:94:b0:c1:e5:b0:98:7c:58:43:99:76:97:ee:9f:b7

Are you sure you want to continue connecting (yes/no)?

Even if the user has the correct version of the hash value available for com-
parison, comparing hexadecimal hash values is cumbersome and error-prone. So
this mechanism against man-in-the-middle attacks[1] might not work so well in
practice.

In order to ease the verification process, OpenSSH 5.1 introduced a new feature
called ”fingerprint visualization”. If activated in the configuration file1, each time
you connect to an SSH server, a little picture is drawn on the screen (see figure 1).

The picture is algorithmically derived from the key fingerprint, so that different
fingerprints generate different pictures. The idea is that if you have connected to
this server before – e.g. from other hosts – you will probably recall the picture and
trust the server (”Yes, that’s a server I know.”). More importantly, if an attacker
poses as your server, the visualization for his fingerprint will be different. You will
notice (”No, I haven’t seen this picture before.”) and cautiously decide not to log
on.

In this paper we explain the algorithm used to visualize the fingerprints and
present some initial findings about its properties. The visualization algorithm was

1Put VisualHostKey yes in /etc/ssh config.

3

Figure 1: Fingerprint shown on first connection

devised and implemented by Alexander von Gernler during OpenBSD Hackathon
2008 [4] based on an idea by Perrig and Song [2] and the concept of ”random art”.
The original C source code [3] is shown in the appendix of this paper.

Based on a Markov model and some brute-force attacks we were only able
to produce some basic results. But we hope that our analysis will spur further
research on this topic, so that eventually it will be found out whether the (heuris-
tically designed) algorithm is secure enough for this purpose.

4

2 The algorithm

2.1 Field

As suggested by the introductory ”drunken bishop” story the algorithm can be
seen as a diagonal random walk on a bounded discrete plane. In the OpenSSH
implementation (see the appendix for the original C source code) this field has a
width of 17 characters and a height of 9 characters.2 Figure 2 shows the starting
position: an empty field with the start position in the middle. We enumerate the
rows and columns, so that the field can be seen as a coordinate system. The origin
is placed at the upper left corner.

1111111

01234567890123456

+-----------------+x (column)

0| |

1| |

2| |

3| |

4| S |

5| |

6| |

7| |

8| |

+-----------------+

y

(row)

Figure 2: Empty field (start position marked)

There are 9 · 17 = 153 positions on the standard OpenSSH field. For our
analysis each position is identified by its column x and row y. We use the notation
[x, y] to show the coordinates of a position. Alternatively a position can be given
by a single number according to the following formula: position = [x, y] = x+17y.
For example, the start position S is at [8, 4] (position 76), as can be seen in figures
2 and 3.

If we take the positions as vertices and draw edges between those positions
that can be reached in a single step, we get the graphs in figure 4 and figure 5.
The graph is connected and contains cycles at the corner positions. It is also non-
planar as can be seen from figure 5. The graphs were automatically generated by
Graphviz (2D) and RTGraph3D (3D).

2Odd numbers are taken so that the marker for the start position can be placed exactly in
the middle of the field. To get a square visualization on screen, the width of the field roughly

5

152144 145 149142 143141136 151140139 150138 146 148147137

33

4

79

41

93

37

135

70

0

82

29

76

73

20

127

38

99

128

60

107

47 49

59

132125

45

64

126

3

24

58

1

54

106

7568

1211

117

94

48

51

25

61

85

14

115103

97

124

22

40

19

119

8

101

110

18

66

10

114

50

16

76

42 44

2

112 113

134

95

83

13

104 118

123

72

57

108

71

52

109

27

78

28

80

122

98

35

133

32

46

116102 111

121

86

39

26

129

15

10089

63

92

53

69

23 31

55

96

81

88

5

21

43

131130

74

30

56

34

105

36

9

87

77

65 67

120

90 91

62

84

17

Figure 3: Positions on the field given as numbers. Start position is marked

0
1

234
56

7
8

9
10

11
12

1314
15

16

17
1819

2021
22

23
24

25
26

27
28

29
30

3132

33

3435
3637

38
39

40

41
42

43

44

45
46

47
48

4950

51
5253

54
55

56

57
58

59

60

61
62

63
64

6566
67

686970
71

72
73

74

75
76

77
78

79
80

81
82

8384

8586
87

88
89

90

91
92

93
94

95
96

97
98

99
10
0

10
1

10
2

10
310

4

10
510

6

10
7

10
8

10
9

11
0

11
1

11
2

11
3

11
4

11
5

11
6

11
711

8

11
9

12
0

12
112

2
12
312

4

12
5

12
6

12
7

12
8

12
9

13
0

13
1

13
2

13
3

13
413

5

13
6

13
7

13
8

13
914

0
14
114

2
14
314

4
14
514

6

14
714

8

14
915

0
15
115

2

Figure 4: The field as a graph (2D)

6

Figure 5: The field as a graph (3D)

2.2 Movement

OpenSSH uses the MD5 cryptographic hash function to generate a 128 bit finger-
print for the server’s key. The visualization algorithm splits the fingerprint into 64
pairs of 2 bits. Figure 6 shows in which order these bit pairs are processed during
the 64 steps of the algorithm: byte-wise from left to right and least significant bits
first.

Fingerprint fc : 94 : b0 : c1 : ... : b7

Bits 11 11 11 00 : 10 01 01 00 : 10 11 00 00 : 11 00 00 01 : ... : 10 11 01 11

| | | | | | | | | | | | | | | | | | | |

Step 4 3 2 1 8 7 6 5 12 11 10 9 16 15 14 13 ... 64 63 62 61

Figure 6: Order of fingerprint processing

Each bit pair decides on the direction the bishop is heading at the current step
(figure 7).3)

Table 8 shows an example, the situation before the first move. From the start
position in the middle of the field (76), bishop Peter can go to the positions located
one step away in diagonal direction (58, 60, 92 or 94). The difference between the
new position and the old position will be called offset.

These diagonal moves can only be performed if Peter is the middle of the field
an no walls hinder him. These positions are marked as M in figure 10. If Peter is at
the border of the field, he cannot go through the wall, but has to slide to the side.

doubles the height, because in standard terminal fonts the characters have double height.
3Each bit pair is taken as a tuple (V,H) where the first bit V decides on the vertical component

(0=up, 1=down) and the second bit H decides on the horizontal component (0=left, 1=right).

7

Bits Direction
00 ↖
01 ↗
10 ↙
11 ↘

Figure 7: Movement according to bit pairs

bits direction new position offset
00 ↖ 58 58 - 76 = -18
01 ↗ 60 60 - 76 = -16
10 ↙ 92 92 - 76 = +16
11 ↘ 94 94 - 76 = +18

Figure 8: Possible movements from the start position (76)

In figure 10 these border positions are shown as T on the top, B at the bottom, L
on the left and R on the right. The four positions in the corners of the field are
shown as a, b, c and d.

Table 9 shows the real directions and the corresponding offsets for all types of
positions:

2.3 Coverage

A position is called empty, if our bishop has never been there before. Otherwise
it is called visited. A walk is the sequence of visited positions resulting from a
particular fingerprint. It can be described as a 64-tuple of positions.

walk = (posstep1, posstep2, ..., posstep64) ∈ N64

For example, the fingerprint shown in the examples above
(fc:94:b0:c1:e5:b0:98:7c:58:43:99:76:97:ee:9f:b7)
generates the following walk:
(76, 58, 76, 94, 112, 94, 78, 62, 78, 60, 42, 60, 76, 60, 42, 24, 42, 26, 10, 26, 44,

26, 8, 26, 42, 24, 40, 24, 40, 22, 40, 58, 42, 24, 40, 24, 8, 26, 8, 7, 8, 9, 25, 9, 25,
41, 25, 43, 27, 45, 29, 13, 29, 45, 63, 79, 97, 115, 133, 117, 133, 151, 135, 152, 151)

The maximum number of visited positions is achieved if all 64 steps move the
bishop to positions where he hasn’t been before, i.e. the start position and 64
different other positions are covered:

maximal coverage =
1 + 64

153
≈ 42.48%

8

pos bits headed dir. real dir. offset
M 00 ↖ ↖ -18

01 ↗ ↗ -16
10 ↙ ↙ +16
11 ↘ ↘ +18

T 00 ↖ ← -1
01 ↗ → +1
10 ↙ ↙ +16
11 ↘ ↘ +18

B 00 ↖ ↖ -18
01 ↗ ↗ -16
10 ↙ ← -1
11 ↘ → +1

L 00 ↖ ↑ -17
01 ↗ ↗ -16
10 ↙ ↓ +17
11 ↘ ↘ +18

R 00 ↖ ↖ -18
01 ↗ ↑ -17
10 ↙ ↙ +16
11 ↘ ↓ +17

a 00 ↖ no move 0
01 ↗ → +1
10 ↙ ↓ +17
11 ↘ ↘ +18

b 00 ↖ ← -1
01 ↗ no move 0
10 ↙ ↙ +16
11 ↘ ↓ +17

c 00 ↖ ↑ -17
01 ↗ ↗ -16
10 ↙ no move 0
11 ↘ → +1

d 00 ↖ ↖ -18
01 ↗ ↑ -17
10 ↙ ← -1
11 ↘ no move 0

Figure 9: Possible movements for
each type of position

1111111

01234567890123456

+-----------------+x

0|aTTTTTTTTTTTTTTTb|

1|LMMMMMMMMMMMMMMMR|

2|LMMMMMMMMMMMMMMMR|

3|LMMMMMMMMMMMMMMMR|

4|LMMMMMMMMMMMMMMMR|

5|LMMMMMMMMMMMMMMMR|

6|LMMMMMMMMMMMMMMMR|

7|LMMMMMMMMMMMMMMMR|

8|cBBBBBBBBBBBBBBBd|

+-----------------+

y

Figure 10: Types of positions

9

So always more than half the field stays empty. For now, this is just an upper
limit: It has to be verified if it is really possible to make 64 steps without re-visiting
a position.

On the other hand, minimal coverage is reached if the bishop just goes back
and forth between the start position and one of the four neighbor positions. This
can take place in exactly four variants (figure 11).

minimal coverage =
2

153
≈ 1.31%

1. Movement: ↖ ↘ ↖ ↘ ...
Bit values: 11 00 11 00 binary = 0xcc hex
Fingerprint: cc:cc:cc:cc:cc:cc:cc:cc:cc:cc:cc:cc:cc:cc:cc:cc

2. Movement: ↗ ↙ ↗ ↙ ...
Bit values: 10 01 10 01 binary = 0x99 hex
Fingerprint: 99:99:99:99:99:99:99:99:99:99:99:99:99:99:99:99

3. Movement: ↙ ↗ ↙ ↗ ...
Bit values: 01 10 01 10 binary = 0x66 hex
Fingerprint: 66:66:66:66:66:66:66:66:66:66:66:66:66:66:66:66

4. Movement: ↘ ↖ ↘ ↖ ...
Bit values: 00 11 00 11 binary = 0x33 hex
Fingerprint: 33:33:33:33:33:33:33:33:33:33:33:33:33:33:33:33

Figure 11: Movements leading to least coverage

2.4 Values

Each position holds a value that counts how often it was visited by the bishop.
The values are represented graphically as the symbols in figure 12.4 Initially all
positions on the field are initialized with the value 0 (white space). The special
values 15 and 16 (S) and the end value 16 (E) mark the start and end position of
the walk and overwrite the real value of the respecting position.

Value 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Character . o + = * B O X @ % & # / ^ S E

Figure 12: Symbols for all possible values

4The intention behind the choice of symbols was to mimic a line of ASCII characters which
is getting thicker each time it is augmented upon intersecting with itself.

10

3 Markov analysis

The visualization algorithm works on 128 bits produced by the MD5 hash algo-
rithm. Let us assume that this hash value is random. In this section we compute
the probability that bishop Peter is on position p after his ith move.

3.1 Transistion matrix

Bishop Peter moves from position to position on the field. Each position he moves
to can be seen as a state in a Markov model.

Using the offsets in the tables above we can now identify the probability to go
from position i to position j:

pi,j = 0.25 ifj − i ∈ offsets(p)

pi,j = 0 ifj − i 6∈ offsets(p)

This gives a 153 × 153 transition matrix. Most elements are 0, but some are
0.25. The structure of the matrix is shown in figure 14: Black pixels are used for
p = 0.25, grey pixels for p = 0.

Figure 13: Transition matrix (black pixels for p = 0.25, grey pixels for p = 0)

11

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

0 1 2 3 4 65 87 9
10

11
16
17

18
19

12
13

14
15

From

To

Figure 14: Upper left corner of the transition matrix

3.2 Probabilities for each position

The initial vector λ = (0, ..., 0, 1, 0, ..., 0) shows the start of the walk: We have a
probability of p=1 (certainty) to be on position 76 at the start.

By computing p(s) = λM s we get the probabilities to reach a given position
after s steps: It gives a vector which holds the probability for each of the 153
positions.

By computing p(64) = λM64 we can now tell how probable it is for each position
that the walk ends there. Figure 15 shows the result graphically. The most proba-
ble positions for the end of the walk (i.e. the symbol E) are the start position and
the positions diagonally next to it. The least probable positions are horizontally
and vertically next to the start position.

How far is the bishop away from the start position after n steps? By weighing
the distance of each position on the field with the probability that it is reached
after n steps. Figure 16 shows the results for a taxi cab metric (distance = δx+δy),
but other distance metrics could be used in the same way.

3.3 Reachability

By looking at p(s) we can see which positions are reachable after s steps: If the
probability p

(s)
i for a position i is zero, it cannot be reached. If probability is

12

Figure 15: Probability for the end of the walk

Figure 16: Mean distance from the start position after n steps (Taxi driver metric)

13

positive, it can.
All elements of p(64) are positive, so all positions are reachable in 64 steps.
By consecutively computing p(s) for each step and checking if the probability is

zero for a position or not, we can identify after how many steps it is first reachable.
Figure 17 shows the output.

84 5 54 558 745 66 4 457

8

4

9

7

8

7

8

6

8

6

6

54

9

5

6

4

8

3

1

7

7 7

8

56

7

5

3

5

3

1

7

5

4

98

45

7

1

6

8

6

8

8

6

77

8

3

3

2

6

8

4

8

2

7

7

4

4

8

8

2

2 2

6

2 7

7

8

9

5

6 8

6

4

8

2

9

7

7

6

2

3

4

5

5

7

6

7

4

68 7

6

7

7

3

6

7

78

8

1

8

9

6 6

8

3

9

5

5

6

7

63

2

5

3

8

7

6

5

8

9

8 8

7

3 8

3

8

8

Figure 17: Steps needed to reach a given position from the start position

14

4 Collisions

4.1 Random brute force attacks

We have an original fingerprint and its visual representation (the picture). Now we
try to find similar fingerprints by randomly generating fingerprints and producing
the pictures. These pictures are compared using a similarity function. This process
is repeated multiple times. Finally, the generated fingerprint that have the highest
similarity to the original are shown to the user.

The similarity metric should be fast, because we want to test a high number
of fingerprints. And it should resemble human pattern recognition, because as
humans remember and compare the visual fingerprints (pictures), the more the
similarity metric is alike to human perception, the better the results of the attack
is.

In our tests we used multiple metrics for determining the similarity. Simple
distance metrics regard each point within the field seperately. If two points at
the same position in both fields are equal, the distance index is not increased.
If they differ, the distance index is incremented by a certain value. We tested
mutiple methods here: using the difference between both field numbers, using the
squared difference, and ignoring the exact field number and only distinguishing
field number n == 0 and n > 0.

Figure 18 shows an example result. At the top is the picture for the original
fingerprint. Shown below is a different fingerprint that generates a similar picture.

Even the best pictures from a set of several million candidates are still easily
distinguishable from the original.

4.2 Constructing collisions based on graph theory

Instead of generating random pictures and testing them for similarity, we now want
to generate fingerprints for which we know that they produce the same picture.
The underlying observation is that it does not matter if the bishop goes clock-wise
or anti-clock-wise: in both cases the picture will be a circle.

So we just repeatedly swap parts of the walk between two cut points.5. Cut
points are two occurences of the same position in the walk, randomly selected. We
generate the fingerprint from the resulting walk and store it in a list, if it is not
already in there.

Here is an example: We try to find collisions for the fingerprint in figure 1:
fc:94:b0:c1:e5:b0:98:7c:58:43:99:76:97:ee:9f:b7. Its walk is (76, 58, 76, 94, 112, 94,
78, 62, 78, 60, 42, 60, 76, 60, 42, 24, 42, 26, 10, 26, 44, 26, 8, 26, 42, 24, 40, 24,

5In the context of genetic algorithms, this is called the inversion operator (for mutation)

15

Original digest: ’fc94b0c1e5b0987c5843997697ee9fb7’

Original visualization:

+--[n/a 9999]----+

| .=o. . |

| . *+*. o |

| =.*..o |

| o + .. |

| S o. |

| o . |

| . . . |

| o .|

| E.|

+-----------------+

53 : 731ee54c82233359e3d5e9f6ccf87e1f distance=2263

+--[n/a 9999]----+

| o .. . |

| + + o |

| = + ..o |

| + . *o |

| S o.o= |

| + .. + |

| . . E |

| . o|

| ...o|

+-----------------+

Figure 18: Searching for similarities

16

40, 22, 40, 58, 42, 24, 40, 24, 8, 26, 8, 7, 8, 9, 25, 9, 25, 41, 25, 43, 27, 45, 29, 13,
29, 45, 63, 79, 97, 115, 133, 117, 133, 151, 135, 152, 151). Possible cut points are
all the positions that occur more than once in the walk.

Figure 19 shows some of the generated collisions. All of them give the same
picture.

4.3 Bruteforcing identical visual fingerprints

In this idea, we want to determine the number of possible collisions with a pre-
defined visual fingerprint by brute-force. Given is a matrix that is generated by
a normal visual fingerprint walk. The algorithm imitates the random walk and
starts at the normal starting position in the center of the field. For each of the
four directions, it checks if the target field was covered by the original fingerprint.
If it was covered, the number within the field is decremented and the next step is
determined like the first one. If no succeding step is possible any more, as their
coverage numbers are equal to 0, the algorithm backtracks until a new direction is
possible again. Using this exhaustive search, it is possible to find all hashes that
produce an identical visual fingerprint.

As the exhaustive search has complexity O(cn) with n as the length of the given
hash / fingerprint walk, it is very slow. In our experiments we did not succeed
in finding all collisions on a hash with 128 bits within 2 weeks. To alleviate this
problem, we reduced the length of the examined hashes to a manageable size. Our
intention was to find trends in the number of collisions of hashes per hash size, so
that we would be able to extrapolate information for long hashes from observed
trends within the shorter hashes. Figure 20 shows the number of collisions within
multiple hashes: the x-axis shows the number of hash bytes, the logarithmic y-axis
shows the amount of collisions found for specific hashes. Each line corresponds
to a specific hash that is analyzed from one byte to 10 bytes. Unfortunately,
randomly chosen hashes did not show much similarity: at higher sizes, the number
of collisions vary greatly and do not only depend on the number of covered fields,
but also on the shape of the produced figure. The number of collisions also do
not increase monotonously with hash size, but may even decrease in certain cases.
Due to these features of the number of collisions, we do not expect to be able to
extrapolate trends for higher hash sizes.

17

fc:94:b0:c1:e5:b0:98:7c:58:43:99:76:97:ee:9f:b7 (original)

[...]

09:1d:0f:da:c8:fd:e9:40:53:42:99:76:97:ee:9f:b7

09:1d:27:da:83:dc:fe:94:d0:40:99:76:97:ee:9f:b7

09:1d:8f:c8:3d:fe:94:80:75:42:99:76:97:ee:9f:b7

09:1d:9a:dc:3c:fe:94:50:0e:43:69:79:97:ee:9f:b7

09:1d:a7:9f:0e:34:8c:9c:f5:40:69:79:97:ee:9f:b7

09:1d:ca:d9:3c:fe:94:50:0e:43:69:79:97:ee:9f:b7

09:1d:ca:d9:3c:fe:94:50:0e:43:99:76:97:ee:9f:b7

09:1d:da:9f:0e:84:dc:13:e7:40:99:76:97:ee:9f:b7

09:1d:e3:9f:0e:84:9c:3d:4d:42:69:79:97:ee:9f:b7

09:1d:e3:9f:0e:84:c9:3d:4d:42:69:79:97:ee:9f:b7

09:1d:eb:4f:09:98:dc:43:4f:42:69:79:97:ee:9f:b7

09:1d:eb:4f:09:98:dc:43:e7:40:69:79:97:ee:9f:b7

09:35:3b:c8:ed:4f:09:d8:e5:40:69:79:97:ee:9f:b7

[...]

1c:71:a2:8d:b7:4f:09:c8:dd:40:69:79:97:ee:9f:b7

1c:71:a2:fd:e9:10:d2:c8:dd:40:69:79:97:ee:9f:b7

1c:71:ba:4f:09:d8:c2:d9:f4:40:99:76:97:ee:9f:b7

1c:71:ca:98:b7:4f:09:c8:f5:40:69:79:97:ee:9f:b7

1c:71:e2:9f:0e:21:9c:d9:dc:40:69:79:97:ee:9f:b7

1c:71:e2:fb:94:20:9c:d9:dc:40:69:79:97:ee:9f:b7

1c:71:f2:88:b7:4f:09:c8:d9:44:99:76:97:ee:9f:b7

1c:71:f2:c8:98:dc:9f:0e:21:45:99:76:97:ee:9f:b7

1c:74:0e:2b:c9:d9:9f:0e:c1:41:69:79:97:ee:9f:b7

1c:74:8a:87:c9:bd:4f:09:0d:43:69:79:97:ee:9f:b7

[...]

fc:94:d0:70:b2:c8:2d:d9:1b:44:69:79:97:ee:9f:b7

fc:94:d0:70:b2:c8:bd:81:87:45:69:79:97:ee:9f:b7

fc:94:d0:70:b2:c8:bd:81:87:45:99:76:97:ee:9f:b7

fc:94:d0:70:b2:d8:1b:c8:87:45:69:79:97:ee:9f:b7

fc:94:d0:70:e2:1b:92:c9:cd:41:69:79:97:ee:9f:b7

fc:94:d0:70:e2:1b:c8:99:c7:41:69:79:97:ee:9f:b7

fc:94:d0:70:e2:1b:c8:99:c7:41:99:76:97:ee:9f:b7

fc:94:d0:70:e2:c2:d9:1b:d8:41:99:76:97:ee:9f:b7

fc:94:d0:70:e2:c8:8d:79:1b:41:99:76:97:ee:9f:b7

fc:94:d0:a0:9c:bd:c1:78:71:42:69:79:97:ee:9f:b7

fc:94:d0:a4:78:1b:8c:c9:35:43:69:79:97:ee:9f:b7

fc:94:d0:a4:8c:99:7c:1b:34:43:69:79:97:ee:9f:b7

fc:94:d0:a4:92:dc:d8:1b:34:43:99:76:97:ee:9f:b7

fc:94:d0:a4:98:bd:c1:c2:35:43:69:79:97:ee:9f:b7

fc:94:d0:a4:98:cd:1b:c2:35:43:69:79:97:ee:9f:b7

fc:94:d0:a4:c2:bd:81:d9:34:43:69:79:97:ee:9f:b7

fc:94:d0:a4:c2:bd:81:d9:34:43:99:76:97:ee:9f:b7

fc:94:d0:a4:c2:d9:1b:d8:34:43:99:76:97:ee:9f:b7

fc:94:d0:b0:bc:81:dc:92:75:42:69:79:97:ee:9f:b7

fc:94:d0:b8:21:d9:c8:4d:27:43:99:76:97:ee:9f:b7

Figure 19: Collisions for the fingerprint of anoncvs.de.openbsd.org

18

2 4 6 8 10

1e
+

00
1e

+
04

hash size (bytes)

nu
m

be
r

of
 c

ol
lis

io
ns

Figure 20: Number of collisions related to the size of hashes, each line corresponds
to an individual hash

19

5 Ideas for further work

Based on a Markov model and some brute-force attacks we were only able to pro-
duce some basic results. But we hope that our analysis will spur further research
on this topic. More questions could be asked. For example:

• How many fingerprints produce the same picture (same values for all posi-
tions) or the same shape (same visited positions, maybe with different values)
as a given fingerprint?

• Can we measure how good a given picture is using those coun.

• How many different pictures and shapes can the algorithm produce?

• How can the hash value be reconstructed from a given visualization?

• How many visualizations can a person distinguish?

• How many self-avoiding walks (coverage = 65/153) exist on the standard
field?

Some of those questions may be hard to answer. The following techniques
could be used to make the problem easier:

• Reduce the field size. For example, take a 3x3 field instead of a 17x9 one.

• Change the algorithm to flip sides at the borders. This would turn the field
into a torus.

• Remove the borders completely. This would lead to a planar graph, which
could be analyzed more easily using graph theory.

In the end this kind of research might reveal whether the (heuristically de-
signed) algorithm is secure enough for this purpose.

20

References

[1] Plasmoid of THC. Fuzzy fingerprints – attacking vulnerabilities in the human
brain, 2003. http://freeworld.thc.org/papers/ffp.pdf.

[2] Adrian Perrig and Dawn Song. Hash visualization: a new technique to im-
prove real-world security. In Proceedings of the International Workshop on
Cryptographic Techniques and E-Commerce (CrypTEC), pages 131–138, July
1999.

[3] Alexander von Gernler. OpenSSH CVS commit message for revision 1.70 of
key.c. http://www.openbsd.org/cgi-bin/cvsweb/src/usr.bin/ssh/key.

c?rev=1.70, 2008.

[4] Alexander von Gernler. SSH fingerprint visualization support. c2k8 developer
blog. http://undeadly.org/cgi?action=article&sid=20080615022750,
2008.

21

